Novel Mad2-targeting miR-493-3p controls mitotic fidelity and cancer cells’ sensitivity to paclitaxel

نویسندگان

  • Mahesh Tambe
  • Sofia Pruikkonen
  • Jenni Mäki-Jouppila
  • Ping Chen
  • Bente Vilming Elgaaen
  • Anne Hege Straume
  • Kaisa Huhtinen
  • Olli Cárpen
  • Per Eystein Lønning
  • Ben Davidson
  • Sampsa Hautaniemi
  • Marko J. Kallio
چکیده

The molecular pathways that contribute to the proliferation and drug response of cancer cells are highly complex and currently insufficiently characterized. We have identified a previously unknown microRNA-based mechanism that provides cancer cells means to stimulate tumorigenesis via increased genomic instability and, at the same time, evade the action of clinically utilized microtubule drugs. We demonstrate miR-493-3p to be a novel negative regulator of mitotic arrest deficient-2 (MAD2), an essential component of the spindle assembly checkpoint that monitors the fidelity of chromosome segregation. The microRNA targets the 3' UTR of Mad2 mRNA thereby preventing translation of the Mad2 protein. In cancer cells, overexpression of miR-493-3p induced a premature mitotic exit that led to increased frequency of aneuploidy and cellular senescence in the progeny cells. Importantly, excess of the miR-493-3p conferred resistance of cancer cells to microtubule drugs. In human neoplasms, miR-493-3p and Mad2 expression alterations correlated with advanced ovarian cancer forms and high miR-493-3p levels were associated with reduced survival of ovarian and breast cancer patients with aggressive tumors, especially in the paclitaxel therapy arm. Our results suggest that intratumoral profiling of miR-493-3p and Mad2 levels can have diagnostic value in predicting the efficacy of taxane chemotherapy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-337-3p and Its Targets STAT3 and RAP1A Modulate Taxane Sensitivity in Non-Small Cell Lung Cancers

NSCLC (non-small cell lung cancer) often exhibits resistance to paclitaxel treatment. Identifying the elements regulating paclitaxel response will advance efforts to overcome such resistance in NSCLC therapy. Using in vitro approaches, we demonstrated that over-expression of the microRNA miR-337-3p sensitizes NCI-H1155 cells to paclitaxel, and that miR-337-3p mimic has a general effect on pacli...

متن کامل

Low MAD2 expression levels associate with reduced progression-free survival in patients with high-grade serous epithelial ovarian cancer

Epithelial ovarian cancer (EOC) has an innate susceptibility to become chemoresistant. Up to 30% of patients do not respond to conventional chemotherapy [paclitaxel (Taxol®) in combination with carboplatin] and, of those who have an initial response, many patients relapse. Therefore, an understanding of the molecular mechanisms that regulate cellular chemotherapeutic responses in EOC cells has ...

متن کامل

Dependence of paclitaxel sensitivity on a functional spindle assembly checkpoint.

Paclitaxel stabilizes microtubules, causing mitotic arrest and activating the spindle assembly checkpoint. We determined whether suppression of the checkpoint genes Mad2 and BubR1 affects paclitaxel resistance and whether overexpression of Mad2 protein in checkpoint-defective cells enhances paclitaxel sensitivity. Suppression of Mad2 and BubR1 in paclitaxel-treated cancer cells abolished checkp...

متن کامل

miR-199a-3p enhances cisplatin sensitivity of ovarian cancer cells by targeting ITGB8

Drug resistance remains a large obstacle for the treatment of ovarian cancer. miRNAs have been reported to be involved in cisplatin (CDDP) resistance in ovarian cancer. The aim of the present study was to investigate the function and mechanism of miR-199a-3p in the CDDP resistance in ovarian cancer. We found that miR-199a-3p was significantly downregulated in chemoresistant ovarian cancer tissu...

متن کامل

Expression of miR-485-3p and its Target FOXD3 in Chronic Lymphocytic Leukemia

Background and Aims: Previous investigations have revealed that microRNAs (miRNAs) can function as oncogenes or tumor suppressors in chronic lymphocytic leukemia (CLL) and that the expression of miRNAs, such as miR-485-3p changes in several illnesses. This study was designed to determine the expression level of miR-485-3p and its target FOXD3 in CLL patients and controls to identify if this miR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016